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Higher-Dimensional Vacuum Solutions of Einstein's 
Field Equations 

A. A. Coley t 
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Some general solutions of the (general) D-dimensional vacuum Einstein field 
equations are obtained. The four-dimensional properties of matter are studied 
by investigating whether the higher-dimensional vacuum field equations reduce 
(formally) to Einstein's four-dimensional theory with matter. It is found that the 
solutions obtained give rise to an induced four-dimensional cosmological perfect 
fluid with a (physically reasonable) linear equation of state. 

1. INTRODUCTION 

Recently there have been many attempts to construct a unified theory 
based on the idea of a multidimensional spacetime (de Sabbata and Schmutzer, 
1983; Applequist et al. ,  1987; Collins et al., 1989) and, indeed, it is generally 
believed that higher dimensions play a significant role in the early universe. 
Theories of this type date back to the original Kaluza-Klein theory (Kaluza, 
1921; Klein, 1926a,b) in which the extra degrees of freedom in a five- 
dimensional theory were associated with an electromagnetic potential and 
the resulting Einstein field equations (EFE) mimicked the Einstein-Maxwell 
equations in four dimensions. A more recent approach to Kaluza-Klein-type 
models, which shall be referred to as the space-time-mass (STM) approach 
(Wesson, 1984, 1990), is via the interesting idea that fundamental physical 
constants (e.g., G, e, h) can be used to construct new quantities (e.g., GMc -z, 
eGl/2c -2, hl/ZGl/2c -3/2) which can then be used as new coordinates in a higher- 
dimensional theory (Fukui, 1988; Coley, 1994) (in a similar fashion to the 
way c is used to construct a fourth coordinate ct in four-dimensional space- 
time theories). 
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There are numerous examples of cosmological models of  higher-dimen- 
sional theories [see, e.g., references in Bailin and Love (1987), Sokolowski 
and Golda (1987), and references cited above]: In this paper, we shall seek 
cosmological solutions of the higher-dimensional vacuum EFEs. Moreover, 
in the spirit of  the original Kaluza-Klein theory (Einstein, 1956; Salam, 
1980; Davidson and Owen, 1985), and consistent with the STM approach 
(Wesson, 1984, 1990; Coley, 1994), we shall investigate whether the proper- 
ties of matter are completely geometrical in nature by studying whether 
the higher-dimensional vacuum EFEs reduce (formally) to Einstein's four- 
dimensional theory with a nonzero energy-momentum tensor constituting 
the material source. Assuming a (D = 4 + N)-dimensional Kaluza-Klein 
cosmology with product topology of the form 

M 4 ;< B u (1) 

where M 4 is the four-dimensional spacetime with (zero-curvature) Robertson-  
Walker metric 

g~W = diag(-1 ,  RZ(t), RZ(t), R2(t)) (2) 

with scale factor R(t )  (appropriate for the early universe), and assuming that 
the four-dimensional source is interpreted as a cosmological perfect fluid 2 
with energy-density ix and pressure p, we find that the four-dimensional EFEs 
(with matter) then yield 

,02 
ix = 3R2 

p = - 2  k R 2 
R R 2 (3) 

It is known (Wesson, 1984, 1990; Coley, 1994) that in five dimensions the 
vacuum EFEs with internal scale factor S(t)  give rise [using (3)] to the familiar 
(zero-curvature) radiation Friedman-Robertson-Walker (FRW) model with 

3 t -  2 = 3p (4) R = t 1/2, S =  t -~/2, ix = 

In this model the properties of matter are prescribed entirely by the (five- 
dimensional) geometry; indeed, this approach gives rise to physically reason- 

2It is known that the energy-momentum tensor of a particular form may formally admit a 
number of physical interpretations (Coley and Tupper, 1986). For example, in the original 
five-dimensional Kaluza-Klein theory the source was interpreted as an electromagnetic field 
and more generally in higher dimensions the four-dimensional source is assumed to be a 
(number of) scalar field(s) (Soleng, 1991). 
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able matter and a relevant cosmological model. Moreover, in five dimensions 
(4) is the unique solution whereby the extra dimension always compactifies. 

We expect the theory to give rise to induced matter with very simple 
structure (Coley, 1994). However, it is of interest to study whether models 
exist with more complex forms of matter (i.e., more general equations of 
state) than that in (4). An investigation of the vacuum field equations of 
the general D-dimensional Einstein-Hilbert plus Gauss-Bonnet Lagrangian 
theory (Madore, 1985; Poisson, 1991) (in which the 'metric components' do 
not depend on the 'internal coordinates') reveals that (4)R v~ 0 (and hence 
Ix ~ 3p) can only be achieved in higher dimensions (D > 5) or within 
generalized Lagrangian theories of gravity. Here we shall study the vacuum 
EFEs with general N (> 1) internal dimensions. 

2. ANALYSIS 

We shall assume that the internal space B N is the product of p compact 
Einstein spaces MNi; i.e., 

P P 

B N = [[ MNi; s Ni = N (5) 
i=1 i=1  

A. First let us consider the case p = 1, B N = S N, in which the D-dimensional 
metric is of the form 

RW gab = ( g ~ ,  S2(t)haB) (6) 

where has is the metric of the internal N-dimensional 'sphere' S u of constant 
curvature K and 'radius' S(t). 

The nontrivial vacuum EFEs yield (Henriques, 1986; Wiltshire, 1987) 

- - +  
R 

S +  3Ro r (K 
R-~ + ( N -  1 ) ~  

From equations (7)-(9) we obtain 

3,O + N ~  = 0 (7) 

N R  _" S /~2 
R S  + 2 R  5 = 0 (8) 

+ ~5 = 0 (9) 

1 K 82 
6 - ~ + 6 N - ~ - ~ + N ( N -  ) ~5 +~-~ = 0  (10) 

If S = So (constant), (7) and (8) yield R = R0 (constant). When R = R0, 
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equations (3) imply Ix = p = 0. Henceforth we shall assume that R 4 : 0  and 
:~ 0. Equation (8) can then be integrated to yield 

R 
- -  = o l . s 2 N e  - 3  (11) 
R 

where c~ is a nonzero constant. 
Assuming then that K = 0, 3 we can also integrate equation (9) to yield 

-~ = ot.13S N R - 3  (12) 

where 13 is a nonzero constant, and hence 

- [3 ( 1 3 )  
S R 

where, from equation (10), for N v~ 1 ([3 = - 1  when N = 1) 

- 3 N  _+ (3N 2 + 6N) m 
[3 = (14) 

3 N ( N -  1) 

Equations (11) and (13) can then be used to obtain (after constant rescaling) 
the general  solution 

3 + [ 3 N  
R = tm; m - 3 + [32~ (15) 

S = t"; n = [3m (16) 

[and the unique solution (4) (m = 1/2 = - n )  in the case N = 1]. 
From (14)-(16)  we obtain 

3 m  + N n  = 1 
(17) 

3m 2 + N n  2 = 1 

Solutions o f  this type have been referred to as 'general ized Kasner solutions' 
in the literature (Henriques, 1986; Wiltshire, 1987). 

From equation (3) we obtain 

tx = 3m2t-2 
(18) 

p = rn(2 - 3 m ) t  -2 

which implies the physically reasonable linear equation of  state 

3The case K 4 0 is discussed in Coley (1994). 
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2 -- 3m 
p = cry; ~ =- - -  (19) 

3m 

For each value of N ( > l )  there are two solutions [of (14)-(17)] for m 
and n of the form m = m+ > 0 and n = n_ < 0 (which is the physically 
more interesting case in which the spatial dimensions expand while the 
internal dimensiofis compactify) and m = m_ < 0 and n = n+ > 0. (Hence 
solutions need not compactify.) Corresponding to m = m+, or+ decreases (from 
its largest value of 1/3 for N = 1) as N increases [toward a limiting value 
of (2 - ,f3)/,,/3]. [Also, n_(n+) increases (decreases) as N increases, etc.] 

B. Next, partially motivated by the STM approach, we consider the case 
p = N, B N = HN=I M}, with the metric 

RW gab = ( g ~ ,  S{(t)  . . . . .  SZp(t) . . . . .  S ~ t ) )  (20) 

where the S~(t) are N cosmic scale factors. 
The nontrivial vacuum EFEs then yield (no summation on i, j with 

l < - i , j < - N )  

R 2 Si Sj R Si (21) 

2 /~ /~2 Si Si Sj /~ Si (22) 

and for each p, 

R 2 Si i~ 3 = ~p + 
l <- p <- N: - 3  -R - - ~  . Si 

From equations (23) we obtain 

(for all) 1 --<i4:j-----N: ~r 
Si 

i*j4:p R i4=p Si 
(23 .p) 

for an appropriately related set of integration constants c~ij. Integration then 
yields (after constant rescaling) 

(for all) 1 -< i 4: j v~ k --< N: Sk = S!I-~iJ~)S~ i: (25) 

for the constants [30k (related to the c~ij). Taking (21) - 3 • (22) + 2 X 
(23 .p) gives (for each p) 

dt ~ + 2  + Z ~ + 3  Z ~ i + 2  = 0  (26) 

N 
SJ - ~ 1-[ Sk i  (24) 
Sj ~=l 
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which implies that (for each p) 

2 Sii + 2 -~p = '~pR-3 k=lII S~ -t (27) 

(again the ",/p are integration constants). Integrating (and rescaling) then yields 

P , q  (P ~ q): S2Vq(~p-~q'-'=(~IS~lS2y"e#'-'Cq)-' 
I ~ r  k 

for each 
\ / / k = l  

which, in turn, implies that 

for all ( l < - i - r  

(where the 8/j~ are constants). 

(28) 

S, = S!I-~iJ*)S~o * (29) 

These equations then imply that for some p, say p = 1, for each i (1 -< i 
-< N) we can write (after rescaling) 

Si = S~ i (30) 

for appropriate constants ~i (i.e., each scale factor can be written as a power 
of SI). From (24) it then follows that 

s,  = (31) 
\ 1  - 

It consequently follows from equation (21), using (30), that/~R -1 is propor- 
tional to Si Si-l, whence equation (31) leads to a power-law solution for R(t), 
whence from (31) and then (30) we obtain power-law solutions for all the Si(t). 

Therefore we have shown that the general solution of equations (21)- 
(23) is necessarily of the form 

R = tm; Si = t ni (1 --< i -- N) (32) 

Substituting these expressions into equations (21)-(23) then yields the follow- 
ing algebraic constraints on the constants m, hi; 

N 

3m + ~ n i = 1 (33) 
i=�91 

N 
3m 2 + ~ n/2 = 1 

i=l  

These solutions are consequently the analogs of the 'generalized Kasner 
solutions' [equations (15)-(17)] to which they reduce when each ni = n. 

Finally, equations (3) again yield p = alx, where now the constant 
is a complicated expression in terms of the n;. Also, there exist nontrivial 
solutions with nk = 0 (Sk = So) for some value of k. 
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3. S U M M A R Y  

We have studied higher-dimensional cosmological models by investigat- 
ing vacuum solutions of the general D-dimensional EFEs. In the spirit of  the 
original Kaluza-Klein theory, and consistent with the STM approach, the 
four-dimensional properties of matter are investigated by assuming that Ein- 
stein's four-dimensional theory with matter is embedded in a higher-dimen- 
sional theory. 

We have obtained some new vacuum solutions of  the higher-dimensional 
EFEs. For the (case A) D-dimensional cosmological line element (6) the 
general solution is given by equations (15)-(17),  and for the (case B) metric 
(20) the general solution is given by equations (32)-(33).  These higher- 
dimensional 'generalized Kasner '  power-law solutions then give rise [through 
(3)] to a four-dimensional material consisting of a cosmological  perfect fluid 
with linear equation of state [see equation (19)]. This induced material source 
is evidently physically reasonable and is somewhat more general than that 
of radiation, which is known to arise in the five-dimensional theory. 
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